

Annual Meeting Proceedings

2023

Grandview, WA

https://www.grapesociety.org

ANNUAL MEETING & TRADE SHOW

November 16 - 17th, 2023

Church of the Nazarene, 500 N. Elm, Grandview, WA 98930

Thur	sday, November 16 2023 (8:00 a.m 5:00 p.m.)
8:00 a.m.	Registration & Trade Show Open
8:45 - 9:05 a.m.	Welcome & WSGS Business Meeting
9:05 - 9:20 a.m.	State of the Grapes, Trent Ball, YVC
9:20 - 9:45 a.m.	Cost of Production Calculator, Trent Ball, YVC
9:45 - 10:10 a.m.	Precision Shoot Thinner: From Research to Reality Melissa Hansen, WA. Wine Commission
10:10- 10:15 a.m.	Door Prize Drawing
10:15 - 10:45 a.m.	Trade Show Break/ Poster Session/ Cold Hardiness Info. Table
10:45 - 11:10 a.m.	Drought Resilience Water Policy, and Water Management, Scott Revell, Roza Irrigation District
11:10 - 11:35 a.m.	Back to Basics: Using Canopy Measurements and Extractable Soil Water to Irrigate Different Wine Grape Varieties, Charles Obiero, WSU
11:35- 12:00 p.m.	Innovative Solutions for Grape Mealybug Management: Mating Disrup tion in Washington State Vineyards, Stephen Onayemi, WSU
12:00 - 1:15 p.m.	Lunch Break and Trade Show
1:20- 1:35 p.m.	WSGS Awards Ceremony
1:35- 1:50 p.m.	WSU VE Curriculum Update, Jean Dodson Peterson, WSU
1:50 - 2:20 p.m.	Basic History of Rootstocks, Jean Dodson Peterson, WSU
2:20 - 2:55 p.m.	Pest Management Strategic Plan Update , Doug Walsh and Michelle Moyer, WSU
2:55 - 3:25 p.m.	Trade Show Break/ Poster Session/ Cold Hardiness Info. Table
3:25 - 3:50 p.m.	Application via Drones for Difficult Vineyards, Bill Kuper, Ag Drones Northwest
3:50 - 4:15 p.m.	Biological Efficacy and Cleaning Performance Evaluation of a Pneumatic - Based Solid Set Canopy Delivery System Optimized for VSP Trained Grapevines Dattatray Bhalekar, WSU
4:15- 4:40 p.m.	Foliar Nitrogen Application in Eastern WA. Vineyards, Pierre Davadant, WSU
4:40 – 4:55 p.m.	Door Prize Drawing www.grapesociety.org

ANNUAL MEETING & TRADE SHOW

November 16-17th 2023

Church of the Nazarene, 500 N. Elm, Grandview, WA 98930

Friday, I	November 17, 2023(8:00 a.m 12:00 p.m.)
8:00 a.m.	Registration & Trade Show Open
8:10 –8:20 a.m.	Welcome & Door Prize Drawings– Election Announcement
8:20 - 8:35a.m.	Al in Agriculture and the AgAID Project, Paola Pesantez Cabrera, WSU
8:35- 9:00 a.m.	Lessons on Developing a Sensor Network in Grapes, Jake Schrader and Shafik Kiraga
9:00- 9:25 a.m.	Spotted Lantern Fly Identification and Risk to Agriculture, Joshua Milnes, WSDA
9:25 - 9:50 a.m.	Japanese Beetle Update, Cassie Cichorz, WSDA
9:50 - 10:15 a.m.	Screening Rootstocks Against the Northern Root-Knot Nematode, Bernadette Gagnier, WSU
10:15– 10:45 a.m.	Trade Show Break
10:45 - 11:10 a.m.	Connecting Soil Health Metrics to Plant -Parasitic Nematode Suppression in a Model System, Devin Rippner, USDA
11:10 –11:50 a.m.	Why it Pays to Manage Safety, Jeff Lutz, WA. Farm Bureau
11:50 - 12:00 p.m.	Scholarship Fundraiser Drawing; Door Prizes
12:00 p.m.	Adjourn

www.grapesociety.org

2023 Annual Meeting Proceedings

Presentations

2023 State of the Grapes, Trent Ball, YVC

Cost of Production Calculator, Trent Ball, YVC

Drought Resistant, Water Policy and Water Management, Scott Revell, Roza Irrigation District

Back to Basics: Using Canopy Measurements and Extractable Soil Water to Irrigate Different Wine Grape Varieties, Charles Obiero, WSU

Mating Disruption for Grape Mealybugs in WA. State, Stephen Onayemi, WSU

Pest Management Strategic Plan Update, Doug Walsh and Michelle Moyer, WSU

Foliar Nitrogen Application in Eastern WA, Pierre Davadant, WSU

AI in Agriculture and the AgAID project, Paola Pesantez Cabrera, WSU

Screening Rootstocks Against the Northern Root-knot Nematode, Bernadette Gagnier, WSU

Washington Concord Production- 2022 • 157,640 tons • Up 53% from 2021 • Budbreak was slightly earlier than normal • Winter in April • Bloom 10 days later than normal Harvest was a late start • Good sugars and good color • Higher than expected yields • 2022 crop was up

• Highest since 2019

2023 Eastern Season • Michigan Cool summer, delayed sugar development in Concords • Higher crop than expected given larger 2022 crop • NY and Pennsylvania Finger Lakes region had low crop yield • Other areas had above average (NY-PA state line) • Delayed ripening, forcing a late harvest • 14 brix not uncommon • Good late fall ripening to drive up Brix levels • Better yields than in 2022

	Concord Grape P	roduction and l	Prices in
Year	Washington Washington Production (Tons)	U.S. Production (Tons)	Cash Price in Washington (\$/ton)
2023	165,452 (est)	415,260 (est)	204
2022	157,639	391,900	407
2021	102,883	338,283	300
2020	135,000	331,000	205
2019	176,237	407,000	170
2018	187,438	398,438	165
2017	176,000	420,190	120
2016	195,000	452,630	120
2015	175,000	401,720	110
2014	260,000	505,180	110
2013	165,000	452,550	225
2012	167,000	303,110	280
	NASS data for 2009-20	017	

Year	Washington Production (Tons)	U.S. Production (Tons)				
2023	13,304	41,000 (Est.)				
2022	13,498	N/A				
2021	10,692	N/A				
2020	10,515	N/A				
2019	14,411	N/A				
2018	18,328	N/A				
2017	17,000	58,650				
2016	25,000	71,180				
2015	14,000	54,050				
	1,212 acres in WA (esti	mate)				

Wine	Sales	in the l	J.S 201	1 to 2	021 in
	r	nillions	of gallon	S	
			Champagne/		Total Potail
Year	Table Wine	Dessert Wine	Sparkling Wine	Total Wine	Value (billion)
2021 (Est.)	880	106	87	1,072	\$78.4
2020	796	96	68	1,036	\$66.8
2019	761	94	70	968	\$74.5
2018	765	95	66	963	\$71.4
2017	766	96	63	961	\$69.5
2016	752	98	58	947	\$65.2
2015	737	96	52	920	\$62.5
2014	734	82	47	899	\$59.7
2013	738	75	44	895	\$56.7
2012	717	72	42	873	\$55.6
2011	695	75	41	848	\$52.6

Year	Washington	California
	Production (Tons)	Production (Tons)
2023	151,000	3,600,000
2022	240,000	3,400,000
2021	179,600	3,610,000
2020	178,000	3,411,000
2019	201,000	3,920,000
2018	261,000	4,281,000
2017	229,000	4,016,000
2016	270,000	4,032,000

Thank You!

- Washington Grape Juice Processors
- Greg MaGill at MaGill Brokerage and Consulting
- Dave Momberger at Growers Cooperative
- Steve Cockram at Growers Co-op Grape Juice Co.
- Eric Huddy at AgriAmerica
- Michael Reinke, MSU Extension
- WA Winegrowers Association

Trent Ball tball@yvcc.edu 509-882-7007

Juice Grape Cost of Production Calculator

Presented by: Trent Ball

Vineyard & Winery Technology Program, Chair, YVC and Partner, **Agri-Business Consultants, LLC.**

What is a COP Calculator

An online budget form where growers input fixed and variable costs to automatically calculate total production costs.

•Can use default industry average data or plug in actual costs

•For use by OR, ID, WA,

•Both conventional and organic practices.

Calculators for grapes:

•Wine Grapes – year 1, year 2, year 3+ •Juice Grapes – year 1, year 2, year 3+

http://www.nwgrapecalculators.org

How do COP Calculators Help?

- Enable growers to calculate their costs of production by variety and market juice, wine.
- Make computing break even costs easy
- Allow growers to compare their costs with industry averages
- Help growers with financial records and business planning
- Valuable tool for growers entering the industry or changing varietals
- Help growers with their presentations to bankers, lenders and investors

What's new in 2023/2024?

- Website interface updated
- Updated prices to 2023/2024 values
- Cultural practices reviewed and updated
 - Land preparation costs
 - Applications versus specific chemicals
- Revenue/Expense Summary
 - 10-year summary of revenue/expenses
- Spreadsheet download instead of web interface only

	1	A B	C D
	1	Juice Grape COP Calculate	or
	3 4	Answer the highlighted questions below prior to starting by replacing t you don't know the figures, you may use the defau	he default values provided. If ult values.
	5	Borrowed and Equity Vineyard Establishment Capital	
	6	Capital borrowed to establish the vineyard (%)	60%
		Enter the percentage of the total capital that will be borrowed for the	e vineyard establshment
Intro	7 8	Interest rate on borrowed capital	7%
Questions	9	Investment interest rate (opportunity cost)	7%
Questions	10	The interest expense for the lost opportunity that could have been ea (money) was used elsewhere	rned if the equity capital
	11	Annual Operating Capital	
	12	Number of months of borrowed capital (Operating)	6
	13	Operating interest rate (%)	6%
	14	Amount of annual borrowed capital (%)	50%
	15	Enter the percentage of annual operating capital that will be borrowe	ed by the operation
	16	Production	
	17	Estimated yield in year 2 (tons)	0
	18	Estimated yield in year 3 (tons)	5
	<	> Intro Questions Year 1 Year 2 Year 3 Y	Year 4+ Summary

Intro Questions										
	A B C D E F G H I J									
49 50	Propane	gal	3							
51	Organic Nutrients/Applications			Iden	ify the applic	ations expec	ted per season b			
52	Items	Units	Price(\$)/Unit	Year 1	Year 2	Year 3	Year 4+			
53	Fertilizer (product cost/application)	/ acre	175	1	1	1	1			
54	Pre-emergent Herbicides (product cost/application)	/ acre	50	1	1	1	1			
55	Post-emergent Herbicide	/ acre	30	1	2	2	2			
56	Fungicide (product cost/application)	/ acre	50	0	0	1	1			
57	Insecticide (product cost/application)	/ acre	8	0	0	1	1			
58	Cultivate	passes	n/a	3	3	3	3			
59	Foliar Nutrient (product cost/application)	/ acre	45	n/a	n/a	n/a	2			
60										
61	Trellis Materials:									
62	Items	Units	Price(\$)/Unit							
63	Wood stakes (markers)	each	0.0972							
64	Plastic ribbon	/ foot	0.01							
65	Staples 2"	/ lb	1.6							
66	#9 Wire soft	/ foot	0.08							
67	#11 Wire HT	/ foot	0.065							
68	#12.5 Wire HT	/ foot	0.05							
69	Crimping tool	each	100							

_			0.11								
	A		В		С	D			E		F
1			Year	1							
2	Default values are pre-entered into the field	ds, to en	ter your o	wn cos	ts, delete	the default	and	replace	with you	ır cost	
3		Site/F	ield Pre	parati	on						
4	Description	Lab	or	Mac	hinery	Materials	s	Service	es	Total	Cost
5	Land Preparation (rip, plow, etc.)	\$	-	\$	-	\$	-	\$	-	\$	-
6	Fumigation	\$	-	\$	-	\$	-	\$	-	\$	-
7	Survey and mark	\$	75.85	\$	5.46	\$	2.33	\$	-	\$	83.65
8	Other	\$	-	\$	-	\$	-	\$	-	\$	-
9											
10		Install	Irrigatio	on Syst	tem						
11	Description	Lab	or	Mac	hinery	Materials	s	Servic	es	Total	Cost
12	Solid set irrigation system	\$	-	\$	-	\$ 2,50	0.00	\$ 2	,000.00	\$ -	4,500.00
13	Other	\$	-	\$	-	\$	-	\$	-	\$	-
14											
15			Plant Vi	nes							
16	Description	Lab	or	Mac	hinery	Materials	S	Service	es	Total	Cost
17	Plant nursery stock	\$	61.50	\$	-	\$ 1,38	2.00	\$	38.00	\$	1,481.50
18	Other	Ş	-	\$	-	\$	-	\$	-	\$	-
19											
20			rellis Sys	stem							
21	Description	Lab	or	Mac	hinery	Materials	S	Service	es	Total	Cost
22	Spread posts and anchors	Ş	41.00) \$	8.74	\$ 3,13	6.00	\$	-	\$	3,185.74
23	Install line posts	Ş	369.00) \$	131.16	\$	-	\$	-	\$	500.16
24	Install end posts	Ş	117.88	\$	51.92	\$	-	\$	-	\$	169.79
25	Install anchors	Ş	61.50	\$	24.59	\$ 9	9.20	\$		\$	185.29
26	String wire	S	133.25	5 \$	-	\$ 31	4.60	\$	-	S	447.85
	Intro Questions Year 1 Y	Year 2	Year 3	Ye	ar 4+	Summary	/	+			

Period	1	2	3	4	5
rield (tons/acre)	0.00	0.00	5.00	12.00	12.00
Price (\$/ton)	\$0.00	\$375.00	\$375.00	\$375.00	\$375.00
REVENUE (\$/acre):					
Grape Sales	\$0.00	\$0.00	\$1,875.00	\$4,500.00	\$4,500.00
Fotal Revenue:	\$0.00	\$0.00	\$1,875.00	\$4,500.00	\$4,500.00
EXPENSES (\$/acre):					
ARIABLE COSTS:					
Grow Tubes	\$331.68	-	-	-	-
Nursery Stock	\$1,382.00	\$69.10	-	-	-
Irrigation Install, Equip Rental	\$4,578.00	\$20.00	\$20.00	\$20.00	\$20.00
Trellis Material/Ties	\$3,549.80	\$27.58	15.00	\$130.00	\$130.00
Fertilizer	\$175.00	\$175.00	\$175.00	\$265.00	\$265.00
Chemicals	\$80.00	\$110.00	\$168.00	\$168.00	\$168.00
Pruning (Custom pre-prune and ha	-	205.00	287.00	\$292.30	\$292.30
Custom Harvesting/Hauling	-	-	\$325.00	\$780.00	\$780.00
Canopy Management	-	922.50	278.80	\$184.50	\$184.50
Labor	\$1,475.43	\$414.15	\$386.75	\$489.50	\$489.50
Irrigation Electrical/Repairs/Water	\$235.00	\$235.00	\$235.00	\$235.00	\$235.00
Miscellaneous	\$220.00	\$200.00	\$200.00	\$200.00	\$200.00
Equipment Fuel/Lube & Repair	\$702.88	\$227.92	\$267.48	\$260.71	\$260.71
Interest on Op. Cap.	\$190.98	\$39.09	\$35.37	\$45.38	\$45.38
Fotal Variable Cost:	\$12,923.10	2,645.34	2,393.40	3,070.38	3,070.38

		and Net	Returns		
Period	1	2	3	4	5
FIXED COSTS:					
Interest- Loan	\$558.94	\$686.21	\$802.91	\$802.91	\$802.91
Management Fee	\$275.00	\$275.00	\$275.00	\$275.00	\$275.00
Property Insurance	\$60.00	\$60.00	\$60.00	\$60.00	\$60.00
RE Tax	\$50.00	\$50.00	\$50.00	\$85.00	\$85.00
Depreciation	\$350.67	\$104.80	\$132.41	\$129.50	\$129.50
Machinery Ownership Cost	\$499.48	\$95.61	\$127.36	\$123.95	\$123.95
Interest- Opportunity Cost	\$382.93	\$485.90	\$532.69	\$532.69	\$532.69
Total Fixed Cost:	<u>\$2,177.01</u>	\$1,757.52	\$1,980.36	\$2,009.04	\$2,009.04
Total Cost:	\$15,100.12	\$4,402.87	\$4,373.76	\$5,079.42	\$5,079.42
Net Returns above Total Costs	(\$15,100.12)	(\$4,402.87)	(\$2,498.76)	(\$579.42)	(\$579.42
Carryover loss	Ó	(\$15,100.12)	(\$19,502.98)	(\$22,001.74)	(\$22,581.17
Accumulated Expenses	(\$15,100.12)	(\$19,502.98)	(\$22,001.74)	(\$22,581.17)	(\$23,160.59
Net Returns above Cash costs	(\$13.867.04)	(\$3.716.56)	(\$1.706.31)	\$206.71	\$206.71

<u></u>	225				
Period	1	2	3	4	5
Yield (tons/acre)	0.00	0.00	5.00	12.00	12.00
Price (\$/ton)	\$0.00	\$375.00	\$375.00	\$375.00	\$375.00
REVENUE (\$/acre):					
Grape Sales	\$0.00	\$0.00	\$1,875.00	\$4,500.00	\$4,500.00
Other Sales	\$ <u>0.00</u>	\$0.00	\$0.00	\$0.00	\$0.00
Total Revenue:	\$0.00	\$0.00	\$1,875.00	\$4,500.00	\$4,500.00
Total Variable Cost:	\$12,923.10	2,645.34	2,393.40	3,070.38	3,070.38
Total Fixed Cost:	\$2,177.01	\$1,757.52	\$1,980.36	\$2,009.04	\$2,009.04
Total Cost:	\$15,100.12	\$4,402.87	\$4,373.76	\$5,079.42	\$5,079.42
Net Returns above Total Costs	(\$15,100,12)	(\$4,402,87)	(\$2,498,76)	(\$579.42)	(\$579.42)
Carryover loss	0	(\$15,100,12)	(\$19,502,98)	(\$22,001,74)	(\$22,581,17)
Accumulated Expenses	(\$15,100.12)	(\$19,502.98)	(\$22,001.74)	(\$22,581.17)	(\$23,160.59)

Questions?

Trent Ball Vineyard & Winery Technology Program, Chair, YVC and Partner, **Agri-Business Consultants, LLC.**

tball@yvcc.edu

			R
	Acres 2015	Acres 2021	
Irrigation Method			
Rill	1,592	646	
Drip	19,980	26,772	
Sprinklers-Portable	8,206	8,187	
Sprinklers-Permanent	41,236	33,360	
No System	1,457	3,550	
Total Assessed Acres	72,473	72,517	

	0045	DODA BC
	2015	<u>2021</u>
Total Tree Fruit	26,415	25,820
Asparagus	135	158
Grapes	7,179	4,861
Wine Grapes	11,006	10,168
Hops	6,822	9,318
Forage	4,470	3,152
Small Grains	345	150
Blue Berries	1,190	1,598
Row Crops	399	149
Corn (all types)	3 439	6 369
	0,400	0,000
Drought Fallow	2,509	
Transition Fallow	N/A	1,276
Fallow	2,362	2,851
Mint	416	263
Yards (lawns)	1,325	2,144
Pasture	3,513	2,243
Other(Processing		
Facilities)	941	869
Total Crons	72 473	72 517

		<u>Roza Drought</u>	Respons	ROZA			
Water Supply	Delivery Restrictions*	Canal Shut Down(s)	Roza Pump Backs On	Leases	End season before Sept. 30	Notes Oct 20 +/- is typ. in full yrs.	
80%	Yes	No	No	No	No	Restrictions on some days	
75%	Yes	No	Yes	No	Possibly	Season ends early	
70%	Yes	No	Yes	Possibly	Possibly	Season ends early Leases optional-varies	
65%	Yes	No	Yes	Possibly	varies	Leases optional-varies	
60%	Yes	Possibly	Yes	Possibly	varies	Leases optional-varies	
55%	Yes	Probably	Yes	Yes	varies	7,000 AF from leases & PB	
50%	Yes	Yes (15+ days)	Yes	Yes	varies	7,000 AF from leases & PB	
45%*	Yes	Yes -2	Yes	Yes	Oct 2*	7,000 AF from leases & PB	
40%*	Yes	Yes -2	Yes	Yes	Sept 27*	7,000 AF from leases & PB	
35%*	Yes	Yes -2	Yes	Yes	Sept 19*	7,000 AF from leases & PB	
30%*	Yes	Yes -2	Yes	Yes	Sept 3*	See note #2	
25%	Yes	Yes -2	Yes	Yes	August 11*	See note #2	
20%	Yes	Yes -2	Yes	Yes	August	See note #2	
15%	Yes	Yes -2	Yes	Yes	August	See note #2	
10%	Yes	Yes -2	Yes	Yes	Yes	See note #2	
5%	Yes	Yes -2	Yes	Yes	Yes	See note #2	

Scott Revell District Manager <u>srevell@roza.org</u> (509) 840-2721-cell

Back to the basics. Using canopy measurements and extractable soil water to irrigate different winegrape varieties

1

Prologue

https://perchance.org/ai-photo-generator

- Why variety-specific irrigation?
- Can we tailor irrigation to specific winegrape varieties? (Our approach)
- Lessons learned
- Where we go from here.....
Think about these

- What comes to mind when you visualize a vine's canopy?
- Is soil type even relevant for a thirsty vine?

3

Why is variety-specific irrigation important?

a. One-size-fits-all irrigation management

WA growers use a well-developed irrigation strategy through RDI customized to fit either red or white winegrape varieties

Further, current irrigation strategies

- > Visual observations of canopy growth and fruit development
- ET data from weather stations, coupled with a kc roughly reflecting canopy size
- Intermittent or continuous monitoring of soil moisture depletion and refilling
- Periodic measurements of plant water status using pressure chambers or porometers

https://perchance.org/ai-photo-generator

But what do we see?

5

Why is variety-specific irrigation important...

White wine

b. Different vines diverse wine styles

6

Smaller berries	 Berry size not relevant 	
• More sugar >24% Brix	• <24% Brix	S S CLA
 High phenolics (tannins and anthocyanins) good color and flavor 	 High phenolics more bitter tastes and reduced aroma 	
		https://perchance.org/ai-photo-generator

Red wine

What should we do?

<image><image><image>

Can we tailor **irrigation to specific winegrape** varieties?

- A field trial conducted in 2021 and 2022 in a drip-irrigated research vineyard planted in 2010 at WSU Prosser
- 30 varieties fully irrigated through bloom, then subjected to two drydown cycles to create a gradual soil water deficit
- First cycle began at fruit set and the second at veraison following irrigation to near field capacity.
- Canopy size at fruit set and at veraison
- Bi-weekly measurements of soil moisture (neutron probe) and Ψleaf (pressure chamber)

Red winegrapes	White winegrapes
Barbera	Albariño
Cabernet franc	Aligoté
Cabernet Sauvignon	Riesling
Durif	Auxerrois
Grenache	Chenin blanc
Lemberger	Gewürztraminer
Malbec	Green Veltliner
Merlot	Chardonnay
Mourvèdre	Melon
Nebbiolo	Muscat blanc
Petit Verdot	Pinot blanc
Pinot noir	Pinot gris
Sangiovese	Sauvignon blanc
Tempranillo	Sémillon
Zinfandel	Viognier
	8

Soil moisture drydown and daily maximum temperatures during the field trials

To normalize the influence of soil type, volumetric water content (VWC) was converted to extractable soil water (ESW), defined as the relative water content normalized to field capacity (FC) and permanent wilting point (PWP):

ESW = (VWC-PWP)/(FC-PWP)

Where: VWC at FC is 30% and PWP 7%.

- Faster drydown in 2021 than in 2022. 42 days in 2021 for the soil to dry to below 0.1 ESW compared to 70 days in 2022 in which soils only dried to about 0.15 ESW.
- Drier and hotter 2021 season compared to 2022. 28 days of 95F and above Daily Tmax during the first drydown of 2021 compared to only 25 in 2022.

9

Canopy growth

The varieties differed in shoot growth, and this was consistent in the two growing seasons

- Nebbiolo, Tempranillo, and Albariño = more vigorous compared with any of the five major varieties grown in Washington
- Durif, Aligoté, and Melon were the least vigorous.
- Bigger = 10% to 30% longer shoots, and smaller = 10% to 40% shorter shoots, compared with Cabernet Sauvignon.

10

Response to water deficit

Response of midday Wleaf to soil moisture deficit

- All varieties maintained their Midday Wleaf (i.e., were isohydric) as the soil dried down but lowered Midday Wleaf (i.e., became anisohydric) below 0.35 ESW thresholds
- Even those with "known" contrasting responses to water stress (Grenache and Sémillon) responded similarly.

11

11

ESW @ -1 MPa Midday Wleaf of selected varieties

> Winegrape varieties have different soil moisture thresholds at which they "feel" water stress.

First lesson learned from our research

Shoot/canopy growth-based tool

 Winegrapes have varied canopies. Vigorous varieties dry the soil more quickly and might need more frequent irrigation once control of shoot growth has been achieved, especially during heat waves.

13

What comes to mind when I visualize a vine's canopy

https://perchance.org/ai-photo-generator

Second lesson learned from our research...

ESW based-tool

- Winegrapes have different ESW thresholds at -1MPa midday Ψleaf. There are those with higher (above 0.18), medium (0.18-0.14), and lower (below 0.14) ESW thresholds at which water stress starts.
- The catch! Know your soil's field capacity and permanent wilting point.

Do thirsty vines even care about the soil type?

No. Emphasis on plant available water. But soil type determines the amount of water available, and the energy needed to extract it.

King, L.D., H.J. Kleiss, and J.A. Thompson. 2003. SSC 200: Soi Science Laboratory Manual. North Carolina State University, Raleigh, NC, USA.

Other tools...Instincts or Experiential!

Where do we go from here?

Water economy, market demands and the future of winegrape industry

> 4R's - Right amount, right place, right time and right variety

17

Acknowledgements

Our sponsors

Washington State Grape and Wine Research Program

Washington State University

Alan, Lynn, Monique, Jennifer, Charity, Donovan

Keller's team

Innovative Solutions for Grape Mealybug Management: Mating Disruption in Washington State Vineyards

Stephen Onayemi PhD Candidate

Advisor: Dr. Doug Walsh

Department of Entomology Washington State University IAREC, Prosser

November 16, 2023

1

Washington State is the second-largest wine producing state in the US with over \$8 billion annual revenue (WSWC 2021)

Visual symptoms of Grape Leafroll Disease (GLD)

Grape mealybugs (GMB) are the primary vectors of grapevine leafroll associated viruses (GLRaVs) (Jarugula et al. 2010)

Goal: Use mating disruption as an alternative IPM strategy to slow down the spread of GLRaVs

Materials and Methods: a study on mating disruption was done April – Oct. 2023 with Pacific Biocontrol and Trecé dispensers

Doug Walsh and Michelle Moyer WSU-IAREC

Changes over the past 30 years in vineyard IPM needs

 Pest Management Strategic Plans
 Address pest management needs and priorities for individual commodities in a particular state or region. The plans take a pest-by-pest approach to identifying the current management practices (chemical and nonchemical) and those under development
 PMSPs were originally designed to detail a specific rop's pest management practices and research and Extension needs concisely, with the Environmental Protection Agency being the key user of the documents in making regulatory

In 2005 my group was responsible for a hard copy mailed survey of grape producers in Washington.

Washington State Grape Pest Management Practices Survey - 2005

Endorsed by: Washington State University, Washington State Concord Grape Research Council, and Washington Association of Wine Grape Growers

Dear Grape Growers

Following you will find a survey of pest management practices which is being mailed to all of the grape growers in Washington State. This study has been reviewed and approved for human subject participation by Washington State University Institutional Review Board. You will be asked to provide information on your 2005 grape acreage, pesticide usage, scouting practices, and what kinds of resources are most useful to you and your operation. This information

EXECUTIVE SUMMARY	
Work Group Members	
The following individuals were present at the July 2, 2014 workshop and/or contributed in a	
significant manner to the development of this Pest Management Strategic Plan	
Justin Andrews, McKinley Springs Vineyards	
Perry Beale, Washington State Department of Agriculture	
Rick Boydston, USDA-Agricultural Research Service	
Joe Cotta, Ste. Michelle Wine Estates	
Rick Hamman, Hogue Ranches	
Richard Hoff, Ste. Michelle Wine Estates	
Damon LaLonde, Vinagium	
Lacey Lybeck, Milbrandt Vineyards	
Kelly McLain, Washington State Department of Agriculture	
Mike Means, Ste. Michelle Wine Estates	
Michelle Moyer, Washington State University	
Leif Olsen, Olsen Brothers Ranches	
Erin Proctor, Seven Hills Vineyard	
Naidu Rayapati, Washington State University	
Tom Thornton, Cloud Mountain Farm	
Derek Way, Sagemoor Vineyards	
Doug Walsh, Washington State University	
James Whitelatch, Claar Wine Group	
Inga Zasada, USDA-Agricultural Research Service	
Contributing Work Group Members Not In Attendance	
Gary Ballard, WSU Clean Plant Center Northwest	
Gwen Hoheisel WSU Extension	
David James. Washington State University	
James McFerran, Vine & Wine Consulting LLC	
Others In Atlandance	
Matt Bour, Associate Director, Waters IDM Center	
Im Earry Director Wastern ID Center	
Sully O'Neal Sensing Communications Sensibility Washington State University	
Vidus 2 charles Execution Discatory Washington Mile University	
and Washington Association of Wine Grane Grouper	
and maximgion resolution of while Glape Glowers	

Outputs & Outcomes 2004 to 2014-Regulatory

- Address quarantine issues, including:
 - Phylloxera quarantine, need new surveys (WSDA)
 - Root stock tests were and are underway
 - Virus quarantines, need new surveys (WSDA)
 - Vine mealybug inclusion in current quarantine description

2014 - Priority List of Critical Needs-Research - Plant Pathology

- Better understanding of vineyard replant issues
 - Plant-parasitic nematodes
 - Impact on vine establishment
- Identification of resistant planting material
- Fungal/oomycete diseases
- Alternative fumigants and preplant soil-borne disease and nematode management tactics
- Fumigant application methodologies (techniques to improve efficacy)
- Virus spread to new plantings via planting stock, residual roots of infected vines, and other means

2014 - Priority List of Critical Needs-Research - Plant Pathology- Virology

- Virus diseases (leafroll, redblotch, rugose wood complex, soil-borne viruses such as fanleaf) continue to be major production constraints; continue research into various aspects of virus diseases
 - Remain vigilant about new and emerging diseases
 - Develop a viable assessment tool, based on virus impacts on vine health, fruit yield and quality, to determine economic turning point between managing and replacing virus-infected vineyards
 - Investigate potential arthropod vectors of redblotch disease
 - Continue research on the epidemiology of virus diseases for improved management tactics

2014 - Priority List of Critical Needs-Research - Weed Science

• Advances in weed control, including

- Effective alternative management for weeds in general
- Best time to cease glyphosate usage to avoid translocation in the grapevine
- Wider range of weed management tools needed to combat development of glyphosate resistance in key weed pests
- Lack of vineyard-specific research or scientists dedicated to vineyard weed management

2014 - Priority List of Critical Needs -Regulatory

- Maintenance of currently registered insecticides, particularly neonicotinyls
- Seek registration of fungicides for control of Euytpa, including thiophanate-methyl (Topsin)*, myclobutanil (Rally)*, tetraconazole (Mettle)**, and, potentially, other fungicides (*SLN in California; ** Registered in California)
- Manpower needed to enforce quarantines and clean plant systems, including monitoring "big-box" retailers
- Strengthen certification programs to prevent introduction of viral and other diseases, insect pests and vectors, and nematodes
- Washington State Department of Agriculture (WSDA) wishes to work with growers on a site-specific water monitoring program

2014 - Priority List of Critical Needs-Education - Monitoring/ scouting training

- Better education on Eutypa identification
- Improved understanding and management of mealybugs and scale insects
- Monitoring for newer arthropod pests such as brown marmorated stinkbug and phylloxera
- Training for interns on scouting

2014 - Priority List of Critical Needs-Education - Other

- Managing crown gall at the nursery and vineyard level, with the growing risk of extreme cold events as a result of climate change.
- Current developments/education in vineyard weed control is a problem since the state lacks weed scientists with vineyard knowledge
- Better understanding of options for vertebrate pest management
- Expand user base of AgWeatherNet toward additional funding for more stations
- Resistance management with respect to fungicides, herbicides, and acaricides
- Help growers understand optimum/appropriate fertilization as determined by testing tissue samples, avoiding the use of unnecessary chemicals and understanding that plant nutrition can impact the pest complex

Conclusions

- We have learned a lot about streamlining the PMSP process since 2014, doing away with the 1-1/2-day workshop in favor of a 2-step process
- We'll likely be sending out a hybrid (paper and/or web-based survey) in 2014
- We will compile the results of the survey and organize a focused workgroup and assign tasks
- Having an updated PMSP will make us substantially more competitive for USDA grants moving forward through the next 10 years

Results

- No differences in pruning weights (2022)
- No differences in yield (2021, 2022, 2023)
- % nitrogen increased in tissues (2022):

	an yr			CON
Jose Market			1	
		- and		
D				
				8

		Soil-applied N (lbs/A) at bloom		Foliar at véraison	
	0	20	40	80	15
Blades, 50% veraison					
Berries, harvest					
Rachis, harvest					
Take-home :					

Foliar N was the most efficient treatment at increasing % nitrogen in leaf blades at veraison and in the fruit at harvest without increasing the growth

Pot experiment: where should N be applied?

Specialty cropping systems on focus so far

Grapes

Tree fruits Apples and Cherries

Nut trees Berries Almonds & Pistachios Blueberries (starting)

And a second

© 2023 AgAID

AgAID Institute – Three major areas of impact for Ag How can AI help agriculture secure the future in food production? **Orchard/vineyard operations** Water Labor management Increasing production costs, and • Water scarcity and drought shortage in unskilled and skilled Extreme weather events can labor • Climate change cause severe crop damage and loss (e.g., frost, heat stress) Challenge: Amplifying human skills Challenge: Water allocation Challenge: Support management and machine efficiency through a decisions based on data close human-AI partnership. © 2023 AgAID

Intelligent Dormant Tree Pruning

Human (expert) pruner

Robotic pruner on the WSU Prosser farm

*Ongoing work by Joseph Davidson (OSU), Cindy Grimm (OSU), Manoj Karkee (WSU)

© 2023 AgAID

Intelligent Blossom Thinning and Spraying

Flower thinning to control crop load

Robotic thinning at the WSU Prosser farm

Reuse of robotic platform for intelligent spraying

*Ongoing work by Manoj Karkee (WSU), Joseph Davidson (OSU), Cindy Grimm (OSU)

Heat Stress Mitigation - Apples, Grapes • Apple/Grape

• Approach

- Weather data driven AI based fruit/berry surface temp. models to drive the mitigation
- Heat stress cause of largest losses in WA tree fruits
 Fruit surface 16-22F more than air temp (varies by cultivar)

© 2023 AgAID

AgAID Institute – Undergraduate Research Internships

Rootstock Material

Rootstock	Attributes	Why
Chardonnay	Commonly planted white cultivar	White cultivar response to <i>M. hapla</i>
Cab Sauv	Commonly planted red cultivar	Red cultivar response to <i>M. hapla</i>
1103P	Drought and salt tolerant	Further support of success in field trial
SO4	Cool region rootstock, performs well in a range of soils	Not explored in WA long term field trial
5BB	High vigor, cooler sites on well drained clay/loam soils	Related to 101-14 and T-5C, in field trial
Minotaur	RKN resistance, easy rooting and bench grafting	Relatively new, M. hapla not explored
1616C	Low vigor rootstock, delayed ripening	Explored in short term WA field trial
140RU	Drought and salt tolerant, high vigor	Not explored in WA long term field trial
44-53 M	Low-moderate vigor, drought tolerant	Phylloxera tolerance, <i>M. hapla</i> not explored
99R	Moderate vigor, moderate drought and salt tolerance	Phylloxera tolerance, not explored in WA
SW	Moderate-low vigor, low drought tolerance	Similar to 101-14 Mgt, adapts to many soils

Rootstock Material - V. vinifera

Rootstock	Attributes	Why
Chardonnay	Commonly planted white cultivar	White cultivar response to <i>M. hapla</i>
Cab Sauv	Commonly planted red cultivar	Red cultivar response to <i>M. hapla</i>
1103P	Froeshi and salt tolerant	Further support of success in field trial
SO4	ol region rootstock, performs well in a range of soils	
	gh vigor, cooler sites on well drained clay/loam soils	
Minitar		
1 160		
TARU.		
M4453		
SW	Moderate-low vigor, low drought tolerance	Similar to 101-14 Mgt, adapts to many soils

WASHINGTON STATE		
Roots	tock Material - Drought Tolerance	
Rootstock	Attributes	Why
Chardonnay	Commonly planted white cultivar	White cultivar response to M. hapla
Cab Sauv	Commonly planted red cultivar	Red cultivar response to M. hapla
1103P	Drought and salt tolerant	Further support of success in field trial
		Related to 101-14 and T-14 in leid trial
		Relatively new, 4/. Anola not explored.
		Explored in short term WA field trial
140RU	Drought and salt tolerant, high vigor	Not explored in WA long term field trial
99R	Moderate drought and salt tolerance, moderate vigor	Phyiloxera tolerance, not explored in WA
SW	Moderate-low vigor, low drought tolerance	Smilar to 101-14 Mgt, adapts to many soils

WASHINGTON STATE		
Roots	stock Material - Low Vigor	
Rootstock	Attributes	Why
Chardonnay	Common, takes wite cultivar	White cultivar response to M. hapla
Cab Sauv	Commonly planted red cultivar	
1103P	Disciplinand salt tolerant	
SO4	ool region rootstock, performs well in a range of soils	
5BB	nigh vigor, cooler sites on well drained clay/loam soils	
Minglab		
1616C	Low vigor rootstock, delayed ripening	Explored in short term WA field trial
A RU	Drought and salt tolerant, high vigor	Not explored in WA long term field trial
44-53 M	Low-moderate vigor, drought tolerant	Phylloxera tolerance, <i>M. hapla</i> not explored
99R	Moderate vicor moderate drought and salt tolerance	Phylloxera tolerance, not evolored in WA
SW	Moderate-low vigor, low drought tolerance	Similar to 101-14 Mgt, adapts to many soils

Rootstock Material - Cooler Climates

Rootstock	Attributes	Why
Chardonnay	Commonly planted white cultivar	White cultivar response to M. hapla
		Red cultivar response to M. hapla
		Further support of success in Fuld trial
SO4	Cool region rootstock, performs well in a range of soils	Not explored in WA long term field trial
5BB	High vigor, cooler sites on well drained clay/loam soils	Related to 101-14 Mgt and Teleki-5C, in field trial
140RU	Drought and salt tolerant, high vigor	Not explored in Wallong term field trial
		Pix/lloxera-olevance, <i>M. hapla</i> not explored
	Moderate-low vigor, low drought tolerance	Complex to 101-14 Mgt, adapts to many soils

Roots	tock Material - RKN resistance	
Rootstock	Attributes	Why
Chardonnay	Common, la servi) te cultivar	White cultivar response to M. hapla
	Commonly planted red cultivar	
1103P	Deschand salt tolerant	
SO4	ool region rootstock, performs well in a range of soils	
5BB	igh vigor, cooler sites on well drained clay/loam soils	Related to 101-14 and T-5C, in field trial
Minotaur	RKN resistance, easy rooting and bench grafting	Relatively new, <i>M. hapla</i> not explored
ARU		
M4453		
		LIC Davis Foundation Plant Services Clean Plant Center Inland Depart Nurse

Processing the Samples

Roots wrapped and ready to dry

Samples dyed with acid fuchsin

Samples ready for quantification under inverted microscope

Results - Corvallis Trial

2021 Experiment 1			
Rootstock	Average <i>M. hapla</i> eggs/g of root	R _f	
Chardonnay	69773.9 <mark>a</mark>	134.7 <mark>a</mark>	
44-53 M	21910.9 <mark>b</mark>	34.7 <mark>b</mark>	
SO4	1181.3 <mark>b</mark>	2.5 <mark>b</mark>	
5BB	79.6 <mark>b</mark>	0.1 <mark>b</mark>	
SW	0 <mark>b</mark>	0 <mark>b</mark>	
1103P	0 <mark>b</mark>	0 <mark>b</mark>	
140 RU	0 <mark>b</mark>	0 <mark>b</mark>	
1616C	0 <mark>b</mark>	0 <mark>b</mark>	
<i>p</i> values	<0.0001	<0.0001	

2021 Experiment 2 Rootstock Average M. hapla R_{f} eggs/g of root Cabernet Sauvignon 518.3<mark>a</mark> 1.34<mark>a</mark> 99R 28.6<mark>b</mark> 0.1<mark>b</mark> 0b Minotaur 0<mark>b</mark> <0.0001 <0.0001 p values Rf value > 1 indicates that the plant is a susceptible host

15

Results - Corvalis Tria

2021 Experiment 1			
Rootstock	Average <i>M. hapla</i> eggs/g of root	R _f	
Chardonnay	69773.9a	134.7 <mark>a</mark>	
44-53 M	21910.9b	34.7 <mark>b</mark>	
SO4	1181.3 <mark>b</mark>	2.5 <mark>b</mark>	
5BB	79.6 <mark>b</mark>	0.1 <mark>b</mark>	
SW	0 <mark>b</mark>	0 <mark>b</mark>	
1103P	0 <mark>b</mark>	0 <mark>b</mark>	
140 RU	0 <mark>b</mark>	0 <mark>b</mark>	
1616C	0 <mark>b</mark>	0 <mark>b</mark>	
<i>p</i> values	<0.0001	<0.0001	

2021 Experiment 2			
Rootstock	Average <i>M. hapla</i> eggs/g of root	R _f	
Cabernet Sauvignon	518.3 <mark>a</mark>	1.34 <mark>a</mark>	
99R	28.6 <mark>b</mark>	0.1 <mark>b</mark>	
Minotaur	0b	0 <mark>b</mark>	
<i>p</i> values	<0.0001	<0.0001	

Rf value > 1 indicates that the plant is a susceptible host

Results – Prosser Trial

2022 Experiment 1			
Rootstock	R _f		
Chardonnay	14069.9 <mark>a</mark>	17.5 <mark>a</mark>	
44-53 M	1073 <mark>b</mark>	1.6 <mark>b</mark>	
SO4	98.7 <mark>b</mark>	0.1 <mark>b</mark>	
5BB	0 <mark>b</mark>	0 <mark>b</mark>	
SW	11 <mark>b</mark>	0.01 <mark>b</mark>	
1103P	0 <mark>b</mark>	0 <mark>b</mark>	
140RU	203.6 <mark>b</mark>	0.3 <mark>b</mark>	
1616C	5.1 <mark>b</mark>	0.01 <mark>b</mark>	
<i>p</i> values	<0.0001	<0.0001	

2022 Experiment 2 Rootstock Average M. hapla R eggs/g of root Cabernet Sauvignon 8144.8<mark>a</mark> 14.8<mark>a</mark> 99R 5.6<mark>b</mark> 0.01<mark>b</mark> Minotaur 5.7<mark>b</mark> 0.01<mark>b</mark> 0.0006 0.0033 p values Rf value > 1 indicates that the plant is a susceptible host

17

WASHINGTON STATE

2022 Experiment 1						
Rootstock	Average <i>M. napla</i> eggs/g of root	R _f				
Chardonnay	14069.9a	17.5 <mark>a</mark>				
44-53 M	1073b	1.6 <mark>b</mark>				
S04	98.7 <mark>b</mark>	0.1 <mark>b</mark>				
5BB	0 <mark>b</mark>	0 <mark>b</mark>				
SW	11 <mark>b</mark>	0.01 <mark>b</mark>				
1103P	0 <mark>b</mark>	0 <mark>b</mark>				
140RU	203.6 <mark>b</mark>	0.3 <mark>b</mark>				
1616C	5.1 <mark>b</mark>	0.01 <mark>b</mark>				
<i>p</i> values	<0.0001	<0.0001				

Results – Prosser Trial

2022 Experiment 2						
Rootstock Average <i>M. hapla</i> R _i eggs/g of root						
Cabernet Sauvignon	8144.8 <mark>a</mark>	14.8 <mark>a</mark>				
99R	5.6 <mark>b</mark>	0.01 <mark>b</mark>				
Minotaur	5.7 <mark>b</mark>	0.01 <mark>b</mark>				
<i>p</i> values	0.0006	0.0033				

Rf value > 1 indicates that the plant is a susceptible host

	Big Picture							
	2022 Rootstock	Experiment 1 verage <i>M. hapla</i> R _f	2022 Rootstock	2 Experime Average M	nt 2 I. hapla R			
Rootstocks can host <i>M. hapla</i> but they do so at lower rates than own-rooted <i>Vitis vinifera</i> .								
	1616C <i>p</i> values	203.60 0.30 5.1b 0.01b <0.0001 <0.0001	plant is a	suscepti				
-	.9	C	500					
	1103P	SW CONTRACTOR	6C Mino	taur	5BB			
	99R	'Resistant' and Very few galls a Susceptible Ro Prolific galling and re	d Tolerant Rootstock and robust root systems potstocks and <i>V. vinif</i> educed root system (Ca	s. fera ab Sauv)	140RU			
	SO4	M4453	Cab Sauv		Chardonnay			

